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Review

The term ‘molecular chaperones’ covers a broad range
of protein families whose common property is that
they recognize non-native proteins and prevent their
aggregation. Several chaperone families also play an
active role in folding or unfolding using ATPase cycles
to drive cycles of non-native protein binding and
release by a range of mechanisms [1,2]. The best
understood of these are the GroE chaperonins,

an abundant subset of the molecular chaperones,
which have a unique fold distinct from other ring-
shaped ATPases [3].

Chaperonins are molecular machines that assist
the folding of protein subunits. Chaperonin complexes
provide folding chambers formed of flexible subunits
that first bind and then twist, expand and engulf non-
native proteins. Concerted domain rotations in each
subunit are driven by an ATPase cycle and controlled
by an intricate set of allosteric interactions that
propagate through the entire molecular machine,
making the bacterial chaperonins a model for complex
allosteric systems [4,5]. How does the chaperonin
accomplish all these steps, and how do these
movements and the encapsulation they bring about
help proteins to fold? We now have partial answers to

The chaperonin folding machine

Helen R. Saibil and Neil A. Ranson

Chaperonins are versatile molecular machines that assist the folding of a wide

range of substrate proteins. They harness an ATPase cycle to control access of

non-native proteins to hydrophobic binding sites. ATP binding promotes large

conformational changes that partially bury the hydrophobic sites and initiate

the binding of a co-chaperonin, creating closed and open cavities. Non-native

proteins progress towards the native fold during their confinement in these

cavities, and are then released by the allosteric action of ATP.



the first question and some interesting ideas about the
second. In this article, we summarize the current state
of understanding of chaperonin action, based on the
well-characterized GroE system from Escherichia coli.

Chaperonin functional cycle

The GroE proteins, both large (GroEL) and small
(GroES), were found to be essential for growth of
bacteriophage λ in E. coli [6]. A coherent picture
began to form with two crucial discoveries: that the
GroE heat-shock proteins were involved in protein
assembly; and that they were homologous to
Rubisco-binding protein in chloroplasts [7]. It was
this link to protein assembly that launched the
molecular-chaperone field.

Chaperonins are present in nearly all organisms
and in all cases tested are essential for viability,
presumably because they are required for the folding of
some essential cellular proteins. They are grouped into
two classes. Group I contains the eubacterial
chaperonins (exemplified by E. coli GroEL and its
lid-forming co-protein GroES) and homologous
proteins from mitochondria and chloroplasts. They are
promiscuous, binding most non-native proteins
in vitro, and fold a significant subset of E. coli proteins
in vivo [8]. Group II contains the eukaryotic chaperonin
CCT and chaperonins from archaea, and its members
operate without a GroES homologue. At least in the
eukaryotic cytosol, group-II chaperonins are more
selective in their clientele. They are clearly involved in
the folding of the cytoskeletal proteins actin and
tubulin [9], but there is also evidence that they interact
functionally with several other proteins [10].

Group-I chaperonins possess hydrophobic binding
sites that line a cavity at either end of a barrel-shaped
complex. This ‘sticky’ lining traps protein subunits or
domains that are unfolded, partially folded or
misfolded, and so have exposed hydrophobic surfaces
(Fig. 1a). The binding of ATP to the chaperonin
subunits initiates large conformational changes that
both twist the binding sites away from the non-native
protein (Fig. 1b) and simultaneously trigger the rapid
binding of a co-chaperonin (Fig. 1c). Binding of the
small co-chaperonin ring initiates a further large
conformational change and caps a now-expanded
folding chamber with a hydrophilic rather than a
hydrophobic lining. Somehow, during these steps of
displacement from the binding sites and
encapsulation, the non-native protein is helped along
its folding pathway (Fig. 1d) and, when the folding
chamber is subsequently opened by the binding of
ATP in the opposite ring, a folded protein subunit is
released (Fig. 1e).

Chaperonin structure

The ‘gymnastic’ability of GroEL to contort itself into a
wide range of different conformations is based on its
structure [11,12] (Fig. 2). GroEL is a 14-mer of
identical 58 kDa subunits arranged as two stacked
rings. The whole assembly is held together by the
back-to-back rings of equatorial domains that form
most of the intra-ring and all of the inter-ring
contacts. The equatorial domains also contain the
nucleotide-binding site (Fig. 2a), near the hinge to the
small, innocuous-looking intermediate domain.
Although it lacks any binding sites, the intermediate
domain turns out to be an important controlling
element in the allosteric mechanism [12–14], and
mutations in this domain have global effects on GroE
function [15]. At the distal surface of each ring is the
mobile apical domain, which contains the binding
sites for substrate proteins and GroES. The apical
domains form the lining of the cavity and are largely
separated from the rest of the structure by gaps in the
walls of the cylinder, although they are tethered to the
intermediate domains of the neighbouring subunits
by salt bridges. The presence of two hinge points in
each subunit, the open ends of the complex, and
windows in the walls of the complex allows scope for
enormous rearrangements.

For group II chaperonins, the composition is more
complex. Archaeal chaperonins consist of one, two or
three different subunits and have eight- or ninefold
symmetry. In eukaryotes, the cytosolic chaperonin
CCT consists of two eight-membered rings, in which
each subunit around the ring is a distinct gene 
product [9]. Chaperonins from group II have no
co-protein, and the role of GroES appears to be fulfilled
by a helical extension to the apical domain that closes
the central cavity in certain nucleotide states.

At the heart of the chaperonin mechanism are the
hydrophobic binding sites facing into the central
cavity of the complex. Twists of the GroEL apical
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Fig. 1. GroEL ATPase and the folding cycle. The GroE complexes are shown as sections through the
stacked-ring complexes. (a) GroEL has high affinity for non-native polypeptide substrate (black curved
line). (b) ATP binds with positive co-operativity to one ring but negative co-operativity between rings,
producing an altered conformation with reduced substrate affinity. (c) The ATP-bound ring rapidly
binds GroES, simultaneously sequestering the hydrophobic binding sites and encapsulating the
substrate in the folding chamber. There is a massive conformational change in the GroES-bound ring.
(d) The substrate folds inside the chamber and ATP is hydrolysed. (e) ATP binding to the opposite ring
primes the release of GroES and the trapped substrate. (f) A new substrate gets encapsulated.
Adapted, with permission, from [14]. 
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domains observed in the nucleotide-bound states
move the binding sites away from the cavity lining
and thus reduce their accessibility to substrate
proteins. The first detailed structural information
about how peptides bind came from the serendipitous
binding of an N-terminal tag to the binding site of the
adjacent molecule in a crystal of GroEL apical
domains [16] (Fig. 3). Subsequent crystal structures
of other peptides and also of the GroES mobile loop

show very similar binding [17]. The bound peptide is
extended and there are pockets for binding
hydrophobic side chains as well as some polar
interactions, consistent with nonspecific binding to
two of the three regions originally mapped out by
mutagenesis [15,18].

Role of ATP

What happens when ATP binds? Biochemically, the
effects are dramatic. The binding of non-native
substrates is weakened enough for some proteins to
be released and folded simply by ATP-driven cycles of
binding and release. Kinetic measurements reveal
the complexity of the system. ATP binding is
positively co-operative within the seven subunits of
one ring (Fig. 1b). Although the oligomer is made of
two chemically identical rings, there is negative
co-operativity between them, inhibiting ATP binding
in the second ring [19–21]. This makes the two rings
asymmetric and causes them to act sequentially in
the ATPase cycle [22,23]. In the crystal structure of
GroEL with an ATP analogue bound [24], this
asymmetry and the large conformational changes
expected from low-resolution electron-microscopy
maps [25] were not observed. The only explanation
consistent with all the observations is that conditions
in the crystal lattice prevent the conformational
changes seen in solution. Such a situation is
surprising but not unprecedented. Indeed, the
archaeal thermosome (a group-II chaperonin) shows a
similar effect, in which the crystal structures of
different nucleotide-bound states have very similar
conformations [26].

The biggest event in the chaperonin cycle, rapidly
triggered by ATP binding, is the formation of an
enclosed cavity upon GroES binding (Fig. 2c). The
GroEL apical domains swing 60° upwards and twist
through 90° to contact loops dangling down from the
GroES lid [12,25,27]. The open hydrophobic cavity is
converted to an expanded but enclosed chamber lined
with hydrophilic residues. The radical change in
surface property comes about because of the 90° twist,
which buries the hydrophobic patches in the walls of
the chamber. Somehow, the displacement of the
substrate from its binding sites, combined with
encapsulation in a GroEL–ATP–GroES cavity,
provides the assistance needed for folding. This key
interaction between the chaperonin and its most
reluctant substrates, such as Rubisco and
mitochondrial malate dehydrogenase (MDH), is still
not understood. Encapsulating these proteins in the
GroEL–ADP–GroES complex (Fig. 1d) does not
suffice to fold them [22]. The signal to release the
GroES and thus the contents of the chamber is ATP
binding to the opposite ring (Fig. 1e). This long-range
allosteric interaction might involve a strained
conformation of the open GroEL ring [14].

The crystal structure of the GroEL–ADP–GroES
complex revealed the hinge rotations that form part 
of the GroEL functional cycle, and described the
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Fig. 2. Crystal structures of Escherichia coli GroEL (Hsp60) and its complex with ADP and GroES
(Hsp10). (a) The three domains of the GroEL subunit are colour coded – green for the equatorial
domain, yellow for the intermediate domain and red for the apical domain. The equatorial domain
contains the nucleotide-binding site, shown occupied, as well as the two inter-ring contacts at the
base of the molecule (negatively charged residues in red, positive in blue). The apical domain
contains the hydrophobic binding sites (grey, space-filling representation) for non-native
polypeptides. ATP is shown in pink. (b) The structure of the unbound GroEL 14-mer, with three
subunits shown at the front [11]. The hydrophobic binding sites face into the end cavities. 
(c) The GroEL–ADP–GroES complex [12], with one GroEL subunit and one GroES subunit (cyan). 

Helix H

Helix I

 

H

I

HI

(a) (b)

Ti BS 

Fig. 3. The structure of an extended polypeptide binding to the hydrophobic patch on the apical
domain of GroEL. (a) The molecular surface of the GroEL apical domain, showing hydrophobic
binding sites on helices H and Ι, is coloured according to surface curvature. Convex, concave and flat
regions are shown in green, grey and white, respectively. Bulky side chains on the bound peptide
insert into hydrophobic cavities on the GroEL apical domain. Reproduced, with permission, 
from [16]. (b) The location of helices H and Ι on a ribbon diagram of the rear three subunits of the
GroEL–GroES–ADP crystal structure [12]. The view is from inside the complex. GroEL is shown in
purple, with helices H and Ι shown as green cylinders. GroES is shown in cyan.



enormous rearrangement of the apical domains upon
GroES binding [12]. The GroEL–ADP–GroES
structure also showed how the intermediate domain
closes down over the nucleotide-binding pocket,
allowing a crucial interaction between Asp398 from
the intermediate domain and the Mg2+ coordinating
the ADP. This observation led to the design of the
GroEL mutant Asp398Ala, which is still able to
function in vitro but has a severely reduced ATPase
rate [22]. The Asp398→Ala mutation has turned out
to be an extremely useful tool that gives a relatively
long-lived ATP-bound state for both structural and
functional studies. To understand the role of ATP in
triggering the machine, it is necessary to examine the
structural consequences of ATP binding, before
GroES is allowed to bind.

An intermediate-resolution cryo-electron-
microscopy structure revealed a few unexpected
twists and turns on the pathway to the GroES-bound
state [14] (Fig. 4). First, the intermediate domain
rotates downwards, similar to the prediction of

molecular dynamics simulation [13], forcing the 
loss of the original salt bridge to the neighbouring
apical domain but forming a new contact to the
neighbouring equatorial domain (Fig. 4b). The freed
apical domain twists 25° but in the ‘wrong’direction
(i.e. opposite to its twist in the GroES-bound complex)
(Figs 4d,5b,c). The significance of this extra travel of
the binding sites in the full trajectory is unknown, but
it shows that the movements are even larger than
previously thought. The twist is large enough
partially to bury the hydrophobic sites (Fig. 4d). In
addition, opposing movements between the two
back-to-back rings of equatorial domains distort the
ring–ring interface (Fig. 4a,b). This provides a
possible mechanism for propagating changes in the
ATP-binding site to the opposite ring. The enormous
conformational rearrangement undergone by a
GroEL subunit upon binding of nucleotide and then
co-protein is shown in Fig. 5; the conformational
changes are easier to follow in a movie
(http://archive.bmn.com/supp/tibs/saibil.html).

Folding mechanisms

Clever experiments have been designed to test the
requirements for concerted domain movements and
also for multiple interactions of a substrate with the
apical domains. Constructs that lock the apical
domain down onto the equatorial domain within a
subunit prevent the movements required for ATP
hydrolysis, substrate release and negative
co-operativity [5,28,29]. It seems likely that apical
domain twisting is needed for the ATP-induced
release of bound substrate. ATP hydrolysis is
catalysed by the downward rotation of the
intermediate domain, inserting Asp398 into the
ATP-binding site. It is possible that the cross-linked
state prevents this movement. Even a single
cross-linked subunit in a ring disrupts negative
co-operativity between rings and the ability of the
ring to release bound substrate [29]. In a remarkable
feat of genetic engineering, Horwich and colleagues
constructed a complete ring of GroEL with all
subunits as a continuous chain, making use of the
proximity of C and N termini in a disordered region
inside the GroEL cylinder [30]. Variants of this
construct were created with selected apical domains
rendered dysfunctional for protein binding by known
point mutations. By screening the activity of a panel
of such constructs, they found that at least three
adjacent, functional apical domains are necessary for
productive folding of substrates such as Rubisco and
MDH. This requirement strongly suggests that these
substrates are bound to multiple hydrophobic sites in
the cavity.

The mechanism by which chaperonins aid the
protein-folding reaction has been the subject of
heated debate. Could the chaperonin cage simply
act as a passive isolation chamber (‘Anfinsen cage’),
improving the efficiency of the folding process by
preventing aggregation of non-native proteins?
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Fig. 4. Allosteric structural changes caused by ATP binding to GroEL. (a,b) Unbound GroEL and
GroEL (D398A)–ATP. Cryo-electron-microscopy density maps are shown as transparent blue surfaces
and the domains of three subunits, docked into the maps as rigid bodies, are colour coded – green for
the equatorial domain, yellow for the intermediate domain and red for the apical domain. Notice the
contact between adjacent intermediate and apical domains in the top ring of (a), and the switch to a
contact with the adjacent equatorial domain in (b) (black circles). The ATP-bound complex is
asymmetric and extended vertically. The inter-ring interface is also distorted. (c,d) Top views of the
same structures. ATP binding causes a large anticlockwise twist of the apical domains. The
hydrophobic residues (circled) become less accessible in the ATP-bound state (d). Adapted, 
with permission, from [14].



Or could a more complex process occur, with GroEL
going through cycles of protein binding and release
that rip apart misfolded proteins and allow them 
to refold in free solution (iterative annealing)? 
Is there an active mechanism assisting folding
inside the cage?

In another elegant study, a version of GroEL was
designed that was specifically labelled with biotin on
the apical-domain protein-binding surfaces [31]. 
If streptavidin is added to this system, it binds to the
biotinylated apical domains and blocks access to the
central cavity, sterically preventing the binding of
non-native proteins. This allowed an ingenious
experiment to be devised in which, after the normal
ejection of a substrate protein from the GroEL cavity,
re-entry is prevented. Addition of streptavidin
immediately halted further folding of Rubisco
(50 kDa), showing that normal folding occurs while
Rubisco is encapsulated in the GroEL–GroES cavity.
Interestingly, for conditions under which
spontaneous refolding of Rubisco is permissible,
encapsulation in the GroEL–GroES cavity 
increased the rate of renaturation. This acceleration
in folding suggests that the chaperonin cage can
block off-pathway misfolding steps and favour
productive folding.

Do the complex twisting and capping motions
through which the chaperonins are driven do
something beyond confining folding proteins?

Requirements for the folding of different GroEL
substrates are diverse and reflect a range of
mechanisms, depending on the size and
physicochemical properties of the substrate. Even
proteins with the same native fold but different
sequences can have quite different folding
requirements. The proposal of forced unfolding or
iterative annealing suggests that multivalently
bound, misfolded Rubisco gets pulled apart 
as the apical domains go through their motions, 
to be released into the cavity and to have a 
chance to collapse into a productive folding
conformation [32]. However, hydrogen-exchange
experiments have not identified such effects on the
substrate MDH [33].

Furthermore, a protein is now known that is too
large to fit into the enclosed cavity but nevertheless
requires the full GroEL, GroES and ATP system for
efficient refolding [34]. The mitochondrial enzyme
aconitase requires the full chaperonin system for its
folding but it is not encapsulated. Rather, it appears
to interact with chaperonins in a way distinct from
those discussed above. Apo-aconitase undergoes
multiple rounds of binding and release in the open
cavity, with GroEL acting as a ‘holding tank’ for the
apoenzyme until its metal cofactor binds and the
holoenzyme is formed. Release of the protein is
triggered allosterically by GroES binding to the
opposite ring. This release signal is transmitted
~150 Å from the site of GroES binding to the apical
domains of the aconitase-bound ring.

Conclusion

Owing to their conformational flexibility,
chaperonins can help the folding of a wide range of
substrate proteins from either open or closed rings.
They exemplify a new kind of molecular machine, in
which domains twist through large angles and
containers alternately get created and discharged,
coupled with alternation of hydrophobic/hydrophilic
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Fig. 5. Range of conformational changes in the GroEL subunit,
showing the unbound GroEL (a) [11], GroEL–ATP (b) [14] and
GroEL–ADP–GroES (c) [12] forms. The chain is colour coded from blue
to red from N- to C-terminus. The domains move as rigid bodies about
the two hinge points marked with arrows in (a). Hydrophobic
substrate-binding residues are shown in grey and nucleotides in pink.
In the ATP-bound state (b), the binding sites twists towards the viewer
but, in the GroES-bound state (c), the apical domain is twisted in the
opposite direction so that the binding sites face away from the direction
of view. In (b), the hinge residues are omitted because the local
conformation is unknown. Transitions between these states are
available as a movie (http://archive.bmn.com/supp/tibs/saibil.html).
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surface character inside the binding cavity. 
By contrast, another molecular machine, ATP
synthase, is a rotary motor with sequential rather
than concerted binding of ATP. In chaperonins,
ATP binding is used to discharge bound ligands and

to create the folding chamber. The network of
long-range allosteric effects is being mapped but we
have not yet reached an understanding of what really
happens to folding proteins inside either the closed or
the open cavities.
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